sábado, 5 de marzo de 2011

UTILIZACION DE MICROONDAS EN COMUNICACIONES ESPACIALES

Los satélites artificiales han extendido el alcance de la línea de propagación y han hecho posible la transmisión transoceánica de microondas por su capacidad de admitir anchas bandas de frecuencias. La línea de transmisión puede extenderse por uno de los distintos medios existentes.

El satélite en forma de globo de plástico metalizado exteriormente puede ser empleado como reflector pasivo, en cuyo caso no se necesita equipo alguno en el satélite. Se ha estimado que veinticuatro de tales reflectores pasivos en órbitas polares establecidas al azar alrededor de unos 5000 kilómetros permitirían una transmisión transatlántica que solo se interrumpiría menos de 1% del tiempo.

Como segunda posibilidad, el satélite puede emplearse como un receptor activo en microondas, retransmitiendo la señal que recibe, bien instantáneamente o tras un almacenaje hasta que el este próximo a la estación receptora. En este último caso la capacidad del canal queda limitada.

Con el satélite en una órbita próxima es decir, inferior a 8000 kilómetros, la pérdida de transmisión es moderada, pero las estaciones terrestres deben tener antenas capaces de explotar casi de horizonte a horizonte. Si el satélite se sitúa en una órbita ecuatorial de veinticuatro horas parecerá como si tuviera fijo sobre algún punto del ecuador, darían una cobertura mundial. Con el satélite fijo en su posición respecto a la tierra y estabilizado en su orientación pueden emplearse antenas grandes y relativamente económicas para las estaciones terrestres, pudiéndose emplear en el satélite una antena con una directividad modesta.

Dispositivos de microondas

Satélite artificial en órbita circular. r =42000 Km

desconectado el radio terrestre Rt= 6370 Km se ve que la altura sobre el suelo del satélite será aproximadamente igual a 36000 Km que es la órbita de clark.

Los piases de la zona tropical y templada usan los satélites estacionarios.

Los países en zonas mas alejadas del ecuador son forzados a incluir la órbita en relación con el ecuador y prescindir así del sincronismo perfecto, por que el desplazamiento del satélite es lento con relación a la tierra.

Como el satélite no debe cargar grandes masas, la potencia de su transmisor es reducida y su antena es relativamente pequeña. Sus ondas deben atravesar la ionosfera terrestre, de ahí el uso de microondas para conseguir altísimas ganancias en las antenas terrestres son parabólicas de grandes dimensiones, aproximadamente igual a 30 m de diámetro con ganancia de 60 dB en 2 Ghz.

Dispositivos de microondas

Los enlaces se hacen básicamente entre puntos visibles es decir, puntos altos de la topografía.

Cualquiera que sea la magnitud del sistema de microondas, para funcionamiento correcto es necesario que los recorridos entre enlaces tengan una altura libre adecuada para la propagación en toda época del año, tomando en cuenta las variaciones de las condiciones atmosféricas de la región.

Para poder calcular las alturas libres debe conocerse la topografía del terreno, así como la altura y ubicación de los obstáculos que puedan existir en el trayecto.

Antes de hacer mediciones en el terreno puede ser necesario estudiar los planos topográficos de la zona. Por lo general el estudio minucioso de los mapas y de los planos facilita las labores, sobre todo en sistema extensos con gran numero de repetidoras y donde existe una gran variedad de rutas posibles. Por proceso de eliminación y de selección ha de llegarse a la escogencia de la ruta más favorable.

Sobre un mapa de la región en escalas del orden de 1:10000, 1: 100000 o 1: 200000, se escogen estaciones separadas de 10 a 50 Km

Dispositivos de microondas

Una vez escogidos los sitios de ubicación propuestos para las torres de las antenas, y habiéndose determinado la elevación del terreno comprendido entre dichos sitios, se prepara un diagrama de perfiles.

En la mayoría de los casos solo es necesario los perfiles de los obstáculos y de sus alrededores, donde pueda obstruirse la línea visual.

Las señales de radiotransmisión en las frecuencias de microondas generalmente se propagan en línea recta en la forma de un haz dirigido de un punto a otro. Sin embargo, el haz puede desviarse o curvarse hacia la tierra por efecto de la refracción de las ondas en la atmósfera. La magnitud de la curvatura se ha tenido en cuenta al calcular el factor K.

Puede emplearse un perfil de trayecto dibujado sin mostrar la curvatura de la tierra, y con el haz de microondas en línea recta entre las dos antenas. Dicho perfil representa el caso en el cual la curvatura del haz es igual a la del terreno y el radio de la tierra es infinito. Esta es una de las condiciones extremas que deben investigarse al estudiar el efecto de las condiciones atmosféricas anormales sobre la propagación de las microondas. Sobre el mismo gráfico se dibujan los recorridos del haz para otros posibles valores de K entre ellos el normal que es 4/3. El trazado de las curvas con diversos valores de K se hace con plantillas normalizadas. Traza el elipsoide de fresnel para verificar si ocurre obturación.

Determinando el perfil del terreno sobre el que se propaga el haz, se estudiará el margen de este con relación al obstáculo mas prominente. Dicho margen hay que compararlo con el radio de la n-esima zona abscisa o, esta dado por la ecuación

Rfn = Ö nhd1d2/d1+d2,m

donde :

Rfn = Radio de la n-esima zona de fresnel en metros.

h = Longitud de onda en metros.

d1 = Distancia del transmisor al punto considerado en metros.

d2 = Distancia del punto considerado al receptor en metros.

Dispositivos de microondas

A partir del mapa de la región se traza en un papel 4/3 el perfil del terreno a lo largo de la trayectoria de estación a estación.

Ordinariamente, el margen sobre obstáculos se refiere al radio d la primera zona de fresnel; si el cociente correspondiente se lleva en abscisas en le gráfico, en coordenadas se obtendrá la influencia sobre la intensidad de campo. Se tiene las condiciones correspondientes a propagación en el espacio libre cuando al margen sobre obstáculos es 0.6 veces el radio de la primera zona de fresnel. Este es el criterio que se sigue en presencia de obstáculos para determinar la viabilidad de un enlace.

intervalo -3 <p/ Rf <1

Gráfico de pérdidas por obstáculo.

Abscisa: margen sobre obstáculos/radio primera zona de fresnel. B. interpretaciones del margen sobre obstáculos

p >0 y p < o

La Figura muestra dos interpretaciones existentes para el margen sobre obstáculos p.

La siguiente es una formula empírica para pérdidas por obstáculo.

Po(dB) = 12 P/ Rf - 10

la ecuación anterior es válida en el intervalo - 3 < P/Rf < 1

Hay momentos en que la distribución de la densidad de la atmósfera cambia y la trayectoria se hace mas restante y pasa a sufrir obstrucción, se debe incluir en los cálculos una pérdida adicional de 3 dB.

Poniendo en funcionamiento tal enlace, la transmisión con atmósfera normal no tendrá la perdida de 3 dB, solo surge en momentos desfavorables y ya está incluida en el diseño.

Luego se calcula la atenuación con la ecuación ( )

Pr / Pt = Gt Ar / 4 TT r²

de la ecuación ( ) se tiene

Ar = Gr h² / 4 TT

Sustituyendo la ecuación ( ) en la ( ) se obtiene la ecuación ( )

Pr / Pt = Gt Gr h² / (4 TT r )²

donde los parámetros son los mismos que se dieron anteriormente.

Expresado en dB la ecuación ( ) se tiene la ecuación ( )

Pr / Pt (dB) = 10 log Pr / Pt = Gt (dB) + Gr (dB) + 20 log h - 20 log r - 22

Sobre un terreno liso el alcance D de la radiación depende de la altura de la antena h. Entonces:

D (km) = 4 Ö h (m)

El problema de las reflexiones interferentes es prácticamente inexistente ya que, para las ondas centimétricas todo terreno es áspero y no da buena reflexión según el criterio de Rayleigh.

El único caso peligroso es cuando existe un espejo de aguas mansas como un lago, bahía orio.

4. ANOMALÍAS DE PROPAGACION EN MICROONDAS

El gradiente del índice de refracción o factor K que corresponde al radio eficaz de la tierra se define como el grado y la dirección de la curvatura que describe el haz de microondas durante su propagación

K = R' / Rt

Donde Rt es el radio real terrestre y R"es el radio de la curvatura ficticia de la tierra.

Cualquier variación del índice de refracción provocada por la alteración de las condiciones atmosféricas, se expresa como un cambio del factor K.

En condiciones atmosféricas normales, el valor de K varia desde 1.2 para regiones elevadas y secas (o 4/3 en onzas mediterráneas), hasta 2 o 3 para zonas costeras húmedas.

Cuando K se hace infinito, la tierra aparece ante el haz como perfectamente plana, ya que su curvatura tiene exactamente el mismo valor que la terrestre.

Si el valor de K disminuye a menos de 1, el haz se curva en forma opuesta a la curvatura terrestre. Este efecto puede obstruir parcialmente al trayecto de transmisión, produciéndose así una difracción.

El valor de la curvatura terrestre para los distintos valores de K se calcula mediante la siguiente fórmula

h = d1 d2 / 1.5 K donde

h = Cambio de la distancia vertical desde una línea horizontal de referencia, en pies,

d1 = Distancia desde un punto hasta uno de los extremos del trayecto, en millas.

d2 = Distancia desde el mismo punto anterior hasta el otro extremo del trayecto, en

millas.

K = Factor del radio eficaz de la tierra.

1ml = 1.61Km.

1 pie = 0.3 m.

Con excepción del desvanecimiento por efecto de trayectos múltiples, los desvanecimientos son fácilmente superables mediante:

- Diversidad de espacio.

- Diversidad de frecuencia.

- Diversidad de polarización.

La alteraciones del valor de K desde 1 hasta infinito ( Rango normal de K), tiene escasa influencia en el nivel de intensidad con que se reciben las señales, cuando el trayecto se ha proyectado en forma adecuada.

Las anomalías de propagación ocurren cuando K es inferior a 1, el trayecto podría quedar obstruido y por lo tanto seria vulnerable a los fuertes desvanecimientos provocados por el efecto de trayectos múltiples.

Cuando K forma un valor negativo, el trayecto podría resultar atrapado entre capas atmosféricas y en consecuencia seria susceptible a sufrir desvanecimiento total.

APLICACIONES DE LAS MICROONDAS

Sin duda podemos decir que el campo mas valioso de aplicación de las m. es el ya mencionado de las comunicaciones, desde las que pudiéramos denominar privadas, pasando por las continentales e incontinentales, hasta llegar a las extraterrestres.

En este terreno, las m. actúan generalmente como portadoras de información, mediante una modulación o codificación apropiada. En los sistemas de radar, cabe citar desde los empleados en armamento y navegación, hasta los utilizados en sistemas de alarma; estos últimos sistemas suelen también basarse en efecto DOPPLER o en cambios que sufre la razón de onda estacionaria (SWR) de una antena, pudiendo incluso reconocerse la naturaleza del elemento de alarma. Sistema automático de puertas, medida de velocidad de vehículos, etc.

Otro gran campo de aplicación es el que se pudiera denominar científico. En radioastronomía ocurre que las radiaciones extraterrestres con frecuencia comprendidas entre 10 Mhz y 10Ghz pueden atravesar el filtro impuesto por la atmósfera y llegar hasta nosotros.

Entre estas radiaciones están algunas de tipo espectral, como la línea de 1420 OH, y otras de tipo continuo debidas a radiación térmica, emisión giromagnética, sincrotónica, etc. La detección de estas radiaciones permite obtener información de la dinámica y constitución del universo. En el estudio de los materiales (eléctricos, magnéticos, palmas) las m. se pueden utilizar bien para la determinación de parámetros macroscópicos, como son la permitividad eléctrica y la permeabilidad magnética, bien para el estudio directo de la estructura molecular de la materia mediante técnicas espectroscópicas y de resonancia.

En el campo médico y biológicose utilizan las m. Para la observación de cambios fisiológicos significativos de parámetros del sistema circulatorio y respiratorio.

Es imposible hacer una enumeración exhaustiva de aplicaciones que, aparte de las ya citadas, pueden ir desde la mera confección de juguetes hasta el controlar de procesos o funcionamiento de computadores ultra rápidos. Quizá el progreso futuro de las microondas. Esta en el desarrollo cada día mayor, de los dispositivos a estado sólido, en los cuáles se consigue una disminución de precio y tamaño que puede llegar a niveles insospechados; estos sistemas son la combinación de los generadores a semiconductores con las técnicas de circuiteria integrada, fácilmente adaptables a la producción en masa.

Sin embargo no todo son beneficios; un crecimiento incontrolado de la utilización de las m, puede dar lugar a problemas no solo de congestión del espectro, interferencias, etc., sino también de salud humana; este último aspecto no está lo suficientemente estudiado, como se deduce del hecho de que los índices de peligrosidad sean marcadamente diferentes de unos países a otros.

TRANSMISION DE MICROONDAS

Un sistema en el que se utilizan localmente las m. Constará fundamentalmente de un generador y de un medio de transmisión de la onda hasta la carga; en caso contrario, tendremos necesidad de un sistema emisor y otro receptor, estando el emisor compuesto por los elementos anteriormente citados, donde la carga sera una antena emisora, mientras que el receptor sera otra antena, medio de transmisión y detector adecuado.

Además de estos elementos existirán otras componentes como pueden ser atenuadores, desfasadores, frecuencimetros, medidores de onda estacionaria, etc.; nosotros nos vamos a circunscribir fundamentalmente a la guía de onda, como elemento fundamental de transmisión a éstas frecuencias.

Como ya se ha citado, la guía de onda es esencia una tubería metálica, a través de la cual se propaga el campo electromagnético sin prácticamente atenuación, dependiendo esta del material de que la misma esté fabricada; así, a una frecuencia determinada, y para una geometría concreta, la atenuación será tanto menor cuanto mejor conductor sea el material. A diferencia de lo que ocurre en el medio libre, en el que el haz de ondas electromagnéticas es mas o menos divergente y sus campos transversales electromagnéticos (ondas TEM, ya citadas), en una guía el campo esta confinado en su interior, evitándose la radiación hacia el exterior, y sus campos ya no pueden ser TEM sino que han de hacer necesariamente del tipo TE (campo electrónico transversal a la dirección de propagación), o bien TM (campo magnético transversal) o bien híbridos, es decir, mezcla de TE y TM.

La configuración de la geometría, tipo de excitación de la guía y frecuencia, ocurriendo además que ciertas configuraciones de campo, denominadas modos, solo son posibles a frecuencias superiores a una determinada, denominada frecuencia de corte, existiendo un modo de propagación de dichos campos, el modo fundamental, que posee la frecuencia de corte mínima. Por debajo de esta frecuencia la guía no propaga la energía electromagnética.

GENERACION DE MICROONDAS

Quizás fue el MAGNETRON, como generador de m. De alta potencia, el dispositivo que dio pie al desarrollo a gran escala de las m., al abrir paso a la utilización de sistemas de radar durante la II Guerra Mundial; sin embargo, fueron KLYSTRONS, los que dieron una mayor versatilidad de utilización de las m., sobre todo en el campo de las comunicaciones, permitiendo además una mayor comprensión de los fenómenos que tiene en lugar los tubos de m. El principio básico de funcionamiento de estos generadores es la modulación de velocidad de un haz electrónico que al atravesar una cavidad resonante, exita en ella oscilaciones electromagnéticas de la frecuencia de m, deseada. El estudio de los KLYSTRONS obligó a un amplio desarrollo desde los fenómenos de carga espacial, la interpretación de la operación de los tubos

Sin embargo, fue el desarrollo de otro tipo de válvulas, las de ONDA PROGRESIVA (TWT, Travelling-Wave Tube); siglas de ésta clase de tubos, las que dieron lugar a una mejor compresión de los fenómenos que tienen lugar en los haces electrónicos, sobre todo en lo que respecta a las ondas electromecánicas, daban lugar a amplificación o generación de m. Para que este acoplamiento sea efectivo es preciso reducir la velocidad de fase de la onda electromagnética lo cual se hace mediante estructuras periódicas de entre las cuales la más utilizada es la hélice; de esta forma es posible mantener una iteración continuada entre la onda electromagnética y el haz electrónico, modulado en velocidad, y consecuentemente en densidad, que va cediendo su energía, digamos cinética, a la onda electromagnética. Posteriormente también se desarrollo el tubo de onda regresiva (BWO< Backward- wave oscillator), en el cual la velocidad de fase de la onda va en dirección opuesta al flujo de energía en el circuito, que ofrecí a, además, una mayor amplitud de sintonía en frecuencia mediante control electrónico.

Los dispositivos anteriores se basan en la conversión de energía de continuidad en la energía de m, mientras que los amplificadores paramétricos (AMPLIFICADOR, 8) utilizan como fuente de energía una de alterna que convierten, por un procedimiento de mezcla, en la de alta frecuencia deseada. En lugar de utilizar como elemento resistivo, utilizan un elemento reactivo, como puede ser un diodo de capacidad variable, y de aquí el bajo nivel de ruido que se puede lograr. Un fundamento análogo tienen los amplificadores cuánticos MASER. Son estos amplificadores de bajo nivel de ruido los que han abierto un gran campo de operación en radioastronomía, así como las intercontinentales vía satélite etc.

Un problema conserniente al desarrollo de las m, lo ha constituido hasta ahora el precio elevado de los generadores; ha sido el decubrimiento de los osciladores a semiconductores el que a abaratado, va camino de hacerlo aun más, dichos generadores, con el cual el campo de aplicaciones de las m.

Está creciendo a un nivel tal que impide predecir las repercusiones futuras, que incluso pueden ser negativas. Estos dispositivos también tienen una concepción diferente a los usuarios de baja frecuencia esencial en que en los de baja frecuencia los electrones del semiconductor son TIBIOS en el sentido que sus energías no difieren grandemente de la red del material, mientras que en los de m. Los electrones son CALIENTES, con energías eléctricas adquiridas de campos eléctricos elevados, que pueden ser muy superiormente a energía de m.

El primero de estos dispositivos se basó en el denominado efecto GUNN que se presenta en semiconductores compuestos, como el arseniuro de galio, material en el fue inicialmente detectado, y desde entonces se han descrito muchos dispositivos, algunos basados en fenómenos bulímicos en el semiconductor, como los gunn, y otros fenómenos que tienen lugar en uniones de semiconductores.

VENTAJAS Y DESVENTAJAS DE LOS RADIOENLACES DE MICROONDAS COMPARADOS CON LOS SISTEMAS DE LINEA METALICA

VENTAJAS DE LOS RADIOENLACES DE MICROONDAS COMPARADOS CON LOS SISTEMAS DE LINEA METALICA

  • Volumen de inversión generalmente mas reducido.

  • Instalación más rápida y sencilla.

  • Conservación generalmente más económica y de actuación rápida.

  • Puede superarse las irregularidades del terreno.

  • La regulación solo debe aplicarse al equipo, puesto que las características del medio de transmisión son esencialmente constantes en el ancho de banda de trabajo.

  • Puede aumentarse la separación entre repetidores, incrementando la altura de las torres.

DESVENTAJAS DE LOS RADIOENLACES DE MICROONDAS COMPARADOS CON LOS SISTEMAS DE LINEA METALICA

  • Explotación restringida a tramos con visibilidad directa para los enlaces.

  • Necesidad de acceso adecuado a las estaciones repetidoras en las que hay que disponer de energía y acondicionamiento para los equipos y servicios de conservación. Se han hecho ensayos para utilizar generadores autónomos y baterías de células solares.

  • La segregación, aunque es posible y se realiza, no es tan flexible como en los sistemas por cable

  • Las condiciones atmosféricas pueden ocasionar desvanecimientos intensos y desviaciones del haz, lo que implica utilizar sistemas de diversidad y equipo auxiliar requerida, supone un importante problema en diseño.

MODULACION EN MICROONDAS

Los generadores de microondas son generadores críticos en cuanto a la tensión y la corriente de funcionamiento.

Uno de los medios es no actuar sobre el generador o amplificador pero si utilizar un dispositivo diodo pin en la guía de salida, modulada directamente la amplitud de la onda.

Otro medio es utilizar un desfasador de ferrita y modular la onda en fase. En este caso es fácil obtener modulación en frecuencia a través del siguiente proceso:

En una primera etapa, se modula en FM una portadora de baja frecuencia, por ejemplo 70 Mhz.

En una segunda etapa, esta portadora modulada es mezclada con la portadora

principal en frecuencia de Ghz, por ejemplo 10 Ghz.

Un filtro de frecuencias deja pasar la frecuencia suma, 10070 Mhz con sus bandas laterales de 3 Mhz y por lo tanto la banda pasante será de 10067 a 10073 Mhz que es la señal final de microondas.

En el receptor se hace la mezcla de esta señal con el oscilador local de 10 Ghz seguido de un filtro que aprovecha la frecuencia de diferencia 70 Mhz la cual es amplificada y después detectada por las técnicas usuales en FM.

Microondas

Se denomina así la porción del espectro electromagnético que cubre las frecuencias entre aproximadamente 3 Ghz y 300 Ghz (1 Ghz = 10^9 Hz), que corresponde a la longitud de onda en vacío entre 10 cm. y 1mm.

La propiedad fundamental que caracteriza a este rango de frecuencia es que el rango de ondas correspondientes es comparable con la dimensión físicas de los sistemas de laboratorio; debido a esta peculiaridad, las m. Exigen un tratamiento particular que no es extrapolable de ninguno de los métodos de trabajo utilizados en los márgenes de frecuencias con que limita. Estos dos límites lo constituyen la radiofrecuencia y el infrarrojo lejano. En radiofrecuencia son útiles los conceptos de circuitos con parámetros localizados, debido a que, en general, las longitudes de onda son mucho mayores que las longitudes de los dispositivos, pudiendo así, hablarse de autoinducciones, capacidades, resistencias, etc., debido que no es preciso tener en cuenta la propagación efectiva de la onda en dicho elemento; por el contrario, en las frecuencias superiores a las de m. son aplicables los métodos de tipo OPTICO, debido a que las longitudes de onda comienzan a ser despreciables frente a las dimensiones de los dispositivos.

El método de análisis más general y ampliamente utilizado en m. consiste en la utilización del campo electromagnético caracterizado por los vectores (E, B, D y H en presencia de medios materiales), teniendo en cuenta las ecuaciones de MAXWELL (v), que rigen su comportamiento y las condiciones de contorno metálicos son muy frecuentes a estas frecuencias, cabe destacar que, p.ej, el campo E es normal y el campo H es tangencial en las proximidades externas de un conductor. No obstante, en las márgenes externas de las m. se utilizan frecuentemente los métodos de análisis correspondientes al rango contiguo del espectro; así, a frecuencias elevadas m. son útiles los conceptos de RAYO, LENTE, etc., ampliamente utilizados en óptica, sobre todo cuando la propagación es transversal electromagnética, (TEM, E y B perpendiculares entre sí y a la dirección de propagación) en el espacio libre. Por otro lado, a frecuencias bajas de m, colindantes con las radiofrecuencias, es útil la teoría de circuitos con parámetros distribuidos, en la que toma en cuenta la propagación efectiva que va a tener la onda en un elemento cualquiera. Así, un trozo de cable metálico, que en baja frecuencia representa simplemente un corto circuito que sirve para efectuar una conexión entre elementos, dejando equipotenciales los puntos que une, a alta frecuencia un sistema cuya frecuencia, por efecto peculiar, puede no ser despreciable y cuya autoinducción puede causar una impedancia que sea preciso tomar en cuenta. Entonces es preciso representar este cable a través de su impedancia (resistencia y autoinducción) por unidad de longitud.

También en la parte de instrumentación experimental, generación y transmisión de m, estas tienen peculiaridades propias que obligan a utilizar con características diferentes a los de los rangos de frecuencias vecinos. Respecto a limitaciones que impiden su funcionamiento a frecuencias de m., como a continuación esquematizamos.

Las líneas de baja frecuencia son usualmente ABIERTAS, con lo cual, si se intenta utilizar a frecuencias elevadas, automáticamente surgen problemas de radiación de la energía electromagnética; para superar este inconveniente es necesario confirmar los campos electromagnéticos, lo que normalmente se efectúa por medio de contornos metálicos; así, los sistemas de transmisión usuales a m. son, o bien lineas coaxiales, o bien, en general, guías de onda continuadas por conductores abiertos o tuberías. En este sentido es ilustrativo ver la evolución de un circuito resonante LC paralelo de baja frecuencia hacia una cavidad resonante, que es circuito equivalente en m. Como a alta frecuencia las inductancias y capacidades (ELECTROSTÁTICA; INDUCCIÓN ELECTROMAGNÉTICA), cobran gran importancia, por pequeñas que sean, un circuito resonante para frecuencias RELATIVAS ALTAS puede ser sencillamente dos placas paralelas y una espira uniendo ambas placas; es para reducir aún más la inductancia se ponen varias espiras en paralelo, se llega a obtener una región completamente cerrada por paredes conductoras.

La energía electromagnética solo puede almacenarse en una cavidad a frecuencias próximas a las denominadas de resonancia de la misma, las cuales dependen fndamentalmente de su geometría; los campos anteriores penetran solo en una capa delgada de las paredes metálicas siendo el espesor ô, de esta capa, denominada profundidad de penetración, dependiente de la frecuencia y de la conductividad del material que constituya a la cavidad a través de la expresión ô= 2/WUO, donde W,U y son respectivamente la frecuencia de la onda, la permeabilidad magnética y conductividad del material (ELECTRICA, CONDUCCION, ELECTROMAGNETISMO) así, para los siguientes metales: aluminio, oro, cobre y plata, los valores de ô a 3Ghz son respectivamente de 1,6, 1,4, 1,2 y 1,4 u. De esta forma es fácil comprender que la energía disipada en las cavidades, si éstas están hechas por buenos conductores, es pequeña, con lo cual las Q, o factores de mérito de las cavidades resonantes Q =2  (energía almacenada)/(energía disipada por ciclo), suelen estar en orden de 10 ^4, pudiendo alcanzar valores mas elevados. Por otra parte el pequeño valor de ô permite fabricar guías de excelente calidad con un simple recubrimiento interior de buen material conductor, (plateado o dorado).

La utilización en m, de las válvulas de vacío convencionales, como amplificadores osciladores, esta limitada, por una parte, por el tiempo de tránsito de los electrones en el interior de la válvula y, por otra, por las inductancias y por las capacidades asociadas al cableado y los electrodos de la misma.

El tiempo de tránsito al hacerce comparable con el período de las oscilaciones, da lugar a que haya un defase entre el campo y las oscilaciones de los electrones; esto implica un consumo de energía que disminuye la impedancia de entrada de la válvula, aunque su rejilla, polarizada negativamente, no capte electrones. Las inductancias y capacidades parásitas causan efectos de resonancia y acople interelectrónico que también conducen a una limitación obvia.

Son muchas las modificaciones sugeridas y utilizadas para superar estos inconvenientes, basándose en los mismos principios de funcionamiento, pero, a frecuencias ya de lleno en el rango de las m., tanto los circuitos de válvulas como los semiconductores trabajan según una concepción completamente diferente a los correspondientes de la baja frecuencia.

COMUNICACIÓN VÍA MICROONDAS

Básicamente un enlace vía microondas consiste en tres componentes fundamentales: El Transmisor, El receptor y El Canal Aéreo. El Transmisor es el responsable de modular una señal digital a la frecuencia utilizada para transmitir, El Canal Aéreo representa un camino abierto entre el transmisor y el receptor, y como es de esperarse el receptor es el encargado de capturar la señal transmitida y llevarla de nuevo a señal digital.

El factor limitante de la propagación de la señal en enlaces microondas es la distancia que se debe cubrir entre el transmisor y el receptor, además esta distancia debe ser libre de obstáculos. Otro aspecto que se debe señalar es que en estos enlaces, el camino entre el receptor y el transmisor debe tener una altura mínima sobre los obstáculos en la vía, para compensar este efecto se utilizan torres para ajustar dichas alturas.

La distancia cubierta por enlaces microondas puede ser incrementada por el uso de repetidoras, las cuales amplifican y redireccionan la señal, es importante destacar que los obstáculos de la señal pueden ser salvados a través de reflectores pasivos. Las siguientes figuras muestran como trabaja un repetidor y como se ven los reflectores pasivos.

Dispositivos de microondas

Dispositivos de microondas

La señal de microondas transmitidas es distorsionada y atenuada mientras viaja desde el transmisor hasta el receptor, estas atenuaciones y distorsiones son causadas por una perdida de poder dependiente a la distancia, reflexión y refracción debido a obstáculos y superficies reflectoras, y a pérdidas atmosféricas.

La siguiente es una lista de frecuencias utilizadas por los sistemas de microondas:

Common Carrier Operational Fixed

2.110 2.130 GHz

1.850 1.990 GHz

2.160 2.180 GHz

2.130 2.150 GHz

3.700 4.200 GHz

2.180 2.200 GHz

5.925 6.425 GHz

2.500 2.690 GHz

10.7 11.700 GHz

6.575 6.875 GHz

12.2 12.700 GHz

Debido al uso de las frecuencias antes mencionadas algunas de las ventajas son:

  • Antenas relativamente pequeñas son efectivas.

  • A estas frecuencias las ondas de radio se comportan como ondas de luz, por ello la señal puede ser enfocada utilizando antenas parabólicas y antenas de embudo, además pueden ser reflejadas con reflectores pasivos.

  • Ora ventaja es el ancho de banda, que va de 2 a 24 GHz.

Como todo en la vida, el uso de estas frecuencias también posee desventajas:

Las frecuencias son susceptibles a un fenómeno llamado Disminución de Multicamino (Multipath Fafing), lo que causa profundas disminuciones en el poder de las señales recibidas.

A estas frecuencias las perdidas ambientales se transforman en un factor importante, la absorción de poder causada por la lluvia puede afectar dramáticamente el Performance del canal.

Materiales en Comunicaciones Microondas

La utilización de nuevos materiales con altas prestaciones es uno de los pilares del avance espectacular de las tecnologías de la información y comunicaciones. El desarrollo de aplicaciones basadas en sus propiedades requiere un profundo conocimiento previo de éstas. En particular, el descubrimiento de superconductividad en óxidos cerámicos multimetálicos a temperaturas superiores a 77 K (superconductores de alta temperatura, SAT) puede permitir del desarrollo práctico de algunas aplicaciones de la superconductividad económicamente inviables con los superconductores clásicos. Sin embargo, la gran complejidad de los SAT y su naturaleza granular dificultan la puesta en marcha de aplicaciones de los mismos de forma inmediata, a pesar del gran esfuerzo investigador que en este campo se está realizando en los países avanzados. En concreto, en nuestro grupo se ha trabajado en la caracterización experimental y modelado fenomenológico de las propiedades electromagnéticas de superconductores de alta temperatura crítica, incidiendo especialmente en las implicaciones de la granularidad, y en el desarrollo de aplicaciones de los mismos en magnetometría y en cintas para el transporte de corriente sin pérdidas. Por otra parte, en relación con las aplicaciones de la superconductividad clásica, se ha trabajado en la implementación en España de los patrones primarios de tensión (efecto Josephson) y resistencia (efecto Hall cuántico), en colaboración con grupos nacionales y extranjeros especializados en metrología eléctrica básica. Por último, también se ha colaborado con otros grupos de investigación en la caracterización electromagnética de materiales de interés tecnológico, como imanes permanentes o aceros estructurales.

Dispositivos Microondas

La ingeniería de microondas/milimétricas tiene que ver con todos aquéllos dispositivos, componentes y sistemas que trabajen en el rango frecuencial de 300 MHz a 300 GHz. Debido a tan amplio margen de frecuencias, tales componentes encuentran aplicación en diversos sistemas de comunicación. Ejemplo típico es un enlace de Radiocomunicaciones terrestre a 6 GHz en el cual detrás de las antenas emisora y receptora, hay toda una circuitería capaz de generar, distribuir, modular, amplificar, mezclar, filtrar y detectar la señal. Otros ejemplos lo constituyen los sistemas de comunicación por satélite, los sistemas radar y los sistemas de comunicación móviles, muy en boga en nuestros días.

La tecnología de semiconductores, que proporciona dispositivos activos que operan en el rango de las microondas, junto con la invención de líneas de transmisión planares; ha permitido la realización de tales funciones por circuitos híbridos de microondas.

En estos circuitos, sobre un determinado sustrato se definen las líneas de transmisión necesarias. Elementos pasivos (condensadores, resistencias) y activos (transistores, diodos) son posteriormente incorporados al circuito mediante el uso de pastas adhesivas y técnicas de soldadura. De ahí el nombre de tecnología híbrida de circuitos integrados (HMIC: "Hibrid Microwave Integrated Circuit"). Recientemente, la tecnología monolítica de circuitos de microondas (MMIC), permite el diseño de circuitos/subsistemas capaces de realizar, muchas de las funciones mencionadas anteriormente, en un sólo "chip". Por las ventajas que ofrece ésta tecnología, su aplicación en el diseño de amplificadores para receptores ópticos, constituye un campo activo de investigación y desarrollo. Prueba de ello es el trabajo realizado con la Universidad Politécnica de Madrid.

El diseño de circuitos de microondas en ambas tecnologías, ha exigido un modelado preciso de los diferentes elementos que forman el circuito. De especial importancia son los dispositivos activos (MESFET, HEMT, HBT); pues conocer su comportamiento tanto en pequeña señal como en gran señal (régimen no lineal), es imprescindible para poder predecir la respuesta de un determinado circuito que haga uso de él. El análisis, modelado y simulación de éstos dispositivos, constituye otra de las áreas de trabajo

lunes, 3 de enero de 2011

Wi-Fi

Wi-Fi (pronunciado en español /wɪfɪ/ y en inglés /waɪfaɪ/) es una marca de la Wi-Fi Alliance (anteriormente la WECA: Wireless Ethernet Compatibility Alliance), la organización comercial que adopta, prueba y certifica que los equipos cumplen los estándares 802.11 relacionados a redes inalámbricas de área local.

Archivo:WifiAccessPoint.jpg

Nokia y Symbol Technologies crearon en 1999 una asociación conocida como WECA (Wireless Ethernet Compatibility Alliance, Alianza de Compatibilidad Ethernet Inalámbrica). Esta asociación pasó a denominarse Wi-Fi Alliance en 2003. El objetivo de la misma fue crear una marca que permitiese fomentar más fácilmente la tecnología inalámbrica y asegurar la compatibilidad de equipos.

De esta forma, en abril de 2000 WECA certifica la interoperabilidad de equipos según la norma IEEE 802.11b, bajo la marca Wi-Fi. Esto quiere decir que el usuario tiene la garantía de que todos los equipos que tengan el sello Wi-Fi pueden trabajar juntos sin problemas, independientemente del fabricante de cada uno de ellos. Se puede obtener un listado completo de equipos que tienen la certificación Wi-Fi en Alliance - Certified Products.

En el año 2002 la asociación WECA estaba formada ya por casi 150 miembros en su totalidad.

La norma IEEE 802.11 fue diseñada para sustituir el equivalente a las capas físicas y MAC de la norma 802.3 (Ethernet). Esto quiere decir que en lo único que se diferencia una red Wi-Fi de una red Ethernet es en cómo se transmiten las tramas o paquetes de datos; el resto es idéntico. Por tanto, una red local inalámbrica 802.11 es completamente compatible con todos los servicios de las redes locales (LAN) de cable 802.3 (Ethernet).

El nombre Wi-Fi

Aunque se pensaba que el término viene de Wireless Fidelity como equivalente a Hi-Fi, High Fidelity, que se usa en la grabación de sonido, realmente la WECA contrató a una empresa de publicidad para que le diera un nombre a su estándar, de tal manera que fuera fácil de identificar y recordar. Phil Belanger, miembro fundador de Wi-Fi Alliance que apoyó el nombre Wi-Fi escribió.

Estándares que certifica Wi-Fi

Artículo principal: IEEE 802.11
Existen diversos tipos de Wi-Fi, basado cada uno de ellos en un estándar IEEE 802.11 aprobado. Son los siguientes:

Los estándares IEEE 802.11b, IEEE 802.11g e IEEE 802.11n disfrutan de una aceptación internacional debido a que la banda de 2.4 GHz está disponible casi universalmente, con una velocidad de hasta 11 Mbps , 54 Mbps y 300 Mbps, respectivamente.

En la actualidad ya se maneja también el estándar IEEE 802.11a, conocido como WIFI 5, que opera en la banda de 5 GHz y que disfruta de una operatividad con canales relativamente limpios. La banda de 5 GHz ha sido recientemente habilitada y, además, no existen otras tecnologías (Bluetooth, microondas, ZigBee, WUSB) que la estén utilizando, por lo tanto existen muy pocas interferencias. Su alcance es algo menor que el de los estándares que trabajan a 2.4 GHz (aproximadamente un 10%), debido a que la frecuencia es mayor (a mayor frecuencia, menor alcance).

Un primer borrador del estándar IEEE 802.11n que trabaja a 2.4 GHz y a una velocidad de 108 Mbps. Sin embargo, el estándar 802.11g es capaz de alcanzar ya transferencias a 108 Mbps, gracias a diversas técnicas de aceleramiento. Actualmente existen ciertos dispositivos que permiten utilizar esta tecnología, denominados Pre-N.

Existen otras tecnologías inalámbricas como Bluetooth que también funcionan a una frecuencia de 2.4 GHz, por lo que puede presentar interferencias con Wi-Fi. Debido a esto, en la versión 1.2 del estándar Bluetooth por ejemplo se actualizó su especificación para que no existieran interferencias con la utilización simultánea de ambas tecnologías, además se necesita tener 40.000 k de velocidad.

Ventajas y desventajas

Las redes Wi-Fi poseen una serie de ventajas, entre las cuales podemos destacar:

Al ser redes inalámbricas, la comodidad que ofrecen es muy superior a las redes cableadas porque cualquiera que tenga acceso a la red puede conectarse desde distintos puntos dentro de un rango suficientemente amplio de espacio.

Una vez configuradas, las redes Wi-Fi permiten el acceso de múltiples ordenadores sin ningún problema ni gasto en infraestructura, no así en la tecnología por cable.

La Wi-Fi Alliance asegura que la compatibilidad entre dispositivos con la marca Wi-Fi es total, con lo que en cualquier parte del mundo podremos utilizar la tecnología Wi-Fi con una compatibilidad total.

Pero como red inalámbrica, la tecnología Wi-Fi presenta los problemas intrínsecos de cualquier tecnología inalámbrica. Algunos de ellos son:

Una de las desventajas que tiene el sistema Wi-Fi es una menor velocidad en comparación a una conexión con cables, debido a las interferencias y pérdidas de señal que el ambiente puede acarrear.

La desventaja fundamental de estas redes existe en el campo de la seguridad. Existen algunos programas capaces de capturar paquetes, trabajando con su tarjeta Wi-Fi en modo promiscuo, de forma que puedan calcular la contraseña de la red y de esta forma acceder a ella. Las claves de tipo WEP son relativamente fáciles de conseguir con este sistema. La alianza Wi-Fi arregló estos problemas sacando el estándar WPA y posteriormente WPA2, basados en el grupo de trabajo 802.11i. Las redes protegidas con WPA2 se consideran robustas dado que proporcionan muy buena seguridad. De todos modos muchas compañías no permiten a sus empleados tener una red inalámbrica[cita requerida]. Este problema se agrava si consideramos que no se puede controlar el área de cobertura de una conexión, de manera que un receptor se puede conectar desde fuera de la zona de recepción prevista (e.g. desde fuera de una oficina, desde una vivienda colindante).

Hay que señalar que esta tecnología no es compatible con otros tipos de conexiones sin cables como Bluetooth, GPRS, UMTS, etc.

Transmisión inalámbrica de energía

La transmisión inalámbrica de energía es una técnica que permite la distribución de energía eléctrica sin utilizar soporte material. Nikola Tesla lo desarrolló en el año 1891 y es conocido como efecto Tesla (nombrado así en honor a él), consiste en variaciones en el flujo magnético, tiene la capacidad de transmitir a distancia electricidad sin necesitar ningún medio, ya sea sólido o algún tipo de conductor. Entre las aplicaciones se encuentra la posibilidad de alimentar lugares de difícil acceso.

Las ondas se transmiten a través del espacio, necesitando un conector y un receptor. Contrariamente a la transmisión de datos, el rendimiento es el criterio a maximizar, y que determinará las diferencias entre las principales tecnologías.

Archivo:Suntower.jpg

Bucle local inalámbrico

El bucle local inalámbrico (Wireless local loop (WLL), radio in the loop (RITL), fixed-radio access (FRA) o fixed-wireless access (FWA) en inglés), es el uso de un enlace de comunicaciones inalámbricas como la conexión de "última milla" para ofrecer servicios de telefonía (POTS) e Internet de banda ancha a los usuarios. Se trata principalmente del uso de frecuencias licenciadas, descartándose las llamadas "bandas libres" debido a la carencia de garantías, por tratarse de frecuencias de uso compartido, con el correspondiente riesgo de saturación e indisponibilidad de la red.

Los operadores establecidos han implantado sus redes tras muchos años de despliegue de infraestructuras. La parte de la red que permite el acceso al abonado, lo que se conoce como "la última milla", se ha acometido tradicionalmente utilizando pares de cobre. Las liberalizaciones del mercado de las telecomunicaciones que han tenido lugar en los últimos años en muchos países y las nuevas licencias para operadores de servicios de telefonía fija, unido a la demanda de mayor ancho de banda, han sido los dos principales factores que han propiciado la aparición de nuevas tecnologías que optimicen el coste de "llegar" hasta el cliente.

Existe por tanto una necesidad de productos con los que el nuevo operador pueda acceder al usuario final con un despliegue rápido frente a los competidores y que garantice, no sólo los servicios clásicos de telefonía para POTS (Plain Old Telephone Service) sino también otros servicios más avanzados para Internet o telefonía digital como la [RDSI] (Red Digital de Servicios Integrados) ya sea BRA (Básico, dos canales) o PRA (Primario, treinta canales), o servicios de datos a velocidades de Nx64Kbps, superiores a las que hasta ahora se ofertaban. La solución para no utilizar cable ya sea cobre, coaxial o fibra óptica y evitar que se ralentice el despliegue de una Red de Acceso es utilizar un sistema vía radio aunque tampoco está exento de dificultades como la accesibilidad a las frecuencias por saturación del espectro, la instalación de torres de antenas en ciudades, o la consecución permisos de instalación en azoteas e interior de inmuebles. Es habitual oír hablar de WLL "Wireless Local Loop" o bucle de abonado sin hilos, englobando en este concepto otros sistemas de mayor capacidad como los de Acceso Radio Punto-Multipunto de Banda Ancha. En realidad es una cuestión de la capacidad de transmisión y no hay un límite oficial para separar unos de otros, podemos diferenciar como sistemas WLL aquellos que no alcanzan la capacidad de 2 Mbps por enlace.

Técnicamente se trata de utilizar una red de Estaciones Base que concentran el tráfico que le envían mediante radioenlaces los diferentes terminales instalados en los abonados.

Las Estaciones Base llevan dicho tráfico hasta la central de conmutación a través de las Redes de Transporte ya sea por fibra óptica o radioenlace.

Tipos de tecnologías

Las plataformas WLL se pueden clasificar, según la tecnología que utilizan: aquellas que se basan en protocolos analógicos móviles, con la desventaja de tener limitaciones para servicios avanzados, las basadas en protocolos digitales móviles, GSM, TDMA, CDMA, las basadas en inalámbricos como DECT, CT-2, y, por último y de forma mucho más minoritaria y menos difundida, las soluciones propietarias de algunos fabricantes.

Otra tecnología avanzada de gran ancho de banda es la conocida como LMDS (Local Multipoint Disribution Service, léase parte 1) para dar servicio principalmente a empresas y con posibilidad de servicios como el Video on Demand (video bajo demanda) ofreciendo capacidades superiores a los 2Mbps por abonado. Se basa en tecnologías de alta frecuencia (entre 28 y 40 GHz) y que por tanto requieren visión directa entre la Estación base y la terminal del usuario. Existen diversos operadores de bucle inalámbrico en España, como es el caso de Iberbanda, que ofrece telefonía y acceso a Internet de Banda ancha y está siendo fomentada por diversas Administraciones, como la Junta de Andalucía o la Junta de Castilla y León, para el acceso a internet de banda ancha para usuarios residenciales y empresariales en el medio rural y montañoso.

Los nuevos operadores deben escoger el tipo de tecnología más adecuado en términos de costes para cada uno de los escenarios que se decidan a atacar, teniendo en cuenta la penetración que esperan conseguir, la densidad de población y otras consideraciones como las geográficas. Los costes del despliegue de la red son un factor importante a tener en cuenta, pero también lo son los costes de operación y mantenimiento de la misma, así como la competencia del cable, ADSL y satélite. Aplicaciones.

APLICACIONES

El bajo nivel de penetración de servicios básicos de telecomunicaciones, en zonas rurales y aplicando una de las tecnología para resolver el problema de interconexión en áreas rurales es la utilización de Wlan con la tecnología de Wifi, Wi-Fi utiliza la tecnología de radio denominada IEEE 802.11b o 802.11a ofreciendo seguridad, fiabilidad, y conectividad tanto entre equipos inalámbricos como en redes con hilos (utilizando IEEE 802.3 o Ethernet). Como se describe en la Figura 2-4, las redes Wi-Fi operan en las bandas de 2.4 y 5 GHz (no es necesario disponer de licencia), con una velocidad de 11Mbps (802.11b) o 54Mbps (802. 11g), ofreciendo un funcionamiento similar al de una red Ethernet. Aunque lo más probable es que los equipos de diferentes fabricantes que cumplan técnicamente los mismos estándares sean compatibles, el certificado Wi-Fi asegura que no presentan ningún tipo de incidencias al trabajar conjuntamente en una red. Los aspectos que debe cubrir un equipo para obtener el certificado Wi-Fi son: Diversas pruebas para comprobar que sigue el estándar Wi-Fi. Pruebas rigurosas de compatibilidad para asegurar la conexión con cualquier otro producto con certificado Wi-Fi y en cualquier espacio (casa, oficina, aeropuerto, etc.) equipado con un acceso Wi-Fi.

Por otra parte Las LAN inalámbricas están sujetas a la certificación de equipo y los requisitos operativos establecidos por las administraciones reguladoras regionales y nacionales. Eso quiere decir que no podemos utilizar un equipo 802.11 homologado en EE.UU en Europa, ni podemos modificar nuestro equipo, tanto internamente como externamente al añadirle una antena, ni aunque esta antena sea comercial. Estas frecuencias podrán ser utilizadas en redes de área local para la interconexión sin hilos entre ordenadores y/o terminales y dispositivos periféricos para aplicaciones en interior de edificios, si bien los enlaces de largo alcance tienen un elevado riesgo de indisponibilidad debido a las saturación del espectro radioeléctrico.

Frecuencia modulada

En telecomunicaciones, la frecuencia modulada (FM) o modulación de frecuencia es una modulación angular que transmite información a través de una onda portadora variando su frecuencia (contrastando esta con la amplitud modulada o modulación de amplitud (AM), en donde la amplitud de la onda es variada mientras que su frecuencia se mantiene constante). En aplicaciones analógicas, la frecuencia instantánea de la señal modulada es proporcional al valor instantáneo de la señal moduladora. Datos digitales pueden ser enviados por el desplazamiento de la onda de frecuencia entre un conjunto de valores discretos, una modulación conocida como FSK.

La frecuencia modulada es usada comúnmente en las radiofrecuencias de muy alta frecuencia por la alta fidelidad de la radiodifusión de la música y el habla (véase Radio FM). El sonido de la televisión analógica también es difundido por medio de FM. Un formulario de banda estrecha se utiliza para comunicaciones de voz en la radio comercial y en las configuraciones de aficionados. El tipo usado en la radiodifusión FM es generalmente llamado amplia-FM o W-FM (de la siglas en inglés "Wide-FM"). En la radio de dos vías, la banda estrecha o N-FM (de la siglas en inglés "Narrow-FM") es utilizada para ahorrar banda estrecha. Además, se utiliza para enviar señales al espacio.

La frecuencia modulada también se utiliza en las frecuencias intermedias de la mayoría de los sistemas de vídeo analógico, incluyendo VHS, para registrar la luminancia (blanco y negro) de la señal de video. La frecuencia modulada es el único método factible para la grabación de video y para recuperar de la cinta magnética sin la distorsión extrema, como las señales de vídeo con una gran variedad de componentes de frecuencia - de unos pocos hercios a varios megahercios, siendo también demasiado amplia para trabajar con equalisers con la deuda al ruido electrónico debajo de -60 dB. La FM también mantiene la cinta en el nivel de saturación, y, por tanto, actúa como una forma de reducción de ruido del audio, y un simple corrector puede enmascarar variaciones en la salida de la reproducción, y que la captura del efecto de FM elimina a través de impresión y pre-eco. Un piloto de tono continuo, si se añade a la señal - que se hizo en V2000 o video 2000 y muchos formatos de alta banda - puede mantener el temblor mecánico bajo control y ayudar al tiempo de corrección.

Dentro de los avances más importantes que se presentan en las comunicaciones, el mejoramiento de un sistema de transmisión y recepción en características como la relación señal – ruido, sin duda es uno de los más importantes, pues permite una mayor seguridad en las mismas. Es así como el paso de Modulación en Amplitud (A.M.), a la Modulación en Frecuencia (F.M.), establece un importante avance no solo en el mejoramiento que presenta la relación señal ruido, sino también en la mayor resistencia al efecto del desvanecimiento y a la interferencia, tan comunes en A.M.

La frecuencia modulada también se utiliza en las frecuencias de audio para sintetizar sonido. Está técnica, conocida como síntesis FM, fue popularizada a principios de los sintetizadores digitales y se convirtió en una característica estándar para varias generaciones de tarjetas de sonido de computadoras personales.

Archivo:Amfm3-en-de.gif

Dentro de las aplicaciones de F.M. se encuentra la radio, en donde los receptores emplean un detector de FM y el sintonizador es capaz de recibir la señal más fuerte de las que transmiten en la misma frecuencia. Otra de las características que presenta F.M., es la de poder transmitir señales estereofónicas, y entre otras de sus aplicaciones se encuentran la televisión, como sub-portadora de sonido; en micrófonos inalámbricos; y como ayuda en navegación aérea.

Un ejemplo de modulación de frecuencia. El diagrama superior muestra la señal moduladora superpuestas a la onda portadora. El diagrama inferior muestra la señal modulada resultante.

Edwin Armstrong presentó su estudio: "Un Método de reducción de Molestias en la Radio Mediante un Sistema de Modulación de Frecuencia", que describió por primera vez a la FM, antes de que la sección neoyorquina del Instituto de Ingenieros de Radio el 6 de noviembre de 1935. El estudio fue publicado en 1936.1

La FM de onda larga (W-FM) requiere un mayor ancho de banda que la modulación de amplitud para una señal moduladora equivalente, pero a su vez hace a la señal más resistente al ruido y la interferencia. La modulación de frecuencia es también más resistente al fenómeno del desvanecimiento, muy común en la AM. Por estas razones, la FM fue escogida como el estándar para la transmisión de radio de alta fidelidad, resultando en el término "Radio FM" (aunque por muchos años la BBC la llamó "Radio VHF", ya que la radiodifusión en FM usa una parte importante de la banda VHF).

Los receptores de radio FM emplean un detector para señales FM y exhiben un fenómeno llamado efecto de captura, donde el sintonizador es capaz de recibir la señal más fuerte de las que transmitan en la misma frecuencia. Sin embargo, la desviación de frecuencia o falta de selectividad puede causar que una estación o señal sea repentinamente tomada por otra en un canal adyacente. La desviación de frecuencia generalmente constituyó un problema en receptores viejos o baratos, mientras que la selectividad inadecuada puede afectar a cualquier aparato.

Una señal FM también puede ser usada para transportar una señal estereofónica (vea FM estéreo) No obstante, esto se hace mediante el uso de multiplexación y demultiplexación antes y después del proceso de la FM. Se compone una señal moduladora (en banda base) con la suma de los dos canales (izquierdo y derecho), y se añande un tono piloto a 19 kHz. Se modula a continuación una señal diferencia de ambos canales a 38 kHz en doble banda lateral, y se le añade a la moduladora anterior. De este modo se consigue compatibilidad con receptores antiguos que no sean estereofónicos, y además la implementación del demodulador es muy sencilla.

Una amplificación de conmutación de frecuencias radiales de alta eficiencia puede ser usada para transmitir señales FM (y otras señales de amplitud constante). Para una fuerza de señal dada (medida en la antena del receptor), los amplificadores de conmutación utilizan menos potencia y cuestan menos que un amplificador lineal. Esto le da a la FM otra ventaja sobre otros esquemas de modulación que requieren amplificadores lineales, como la AM y la QAM.

Archivo:Frequency-modulation.png

Micrófono inalámbrico

Un micrófono inalámbrico es un dispositivo que capta sonidos y los transmite por radiofrecuencias; pueden ser de solapa o de mano (tipo bastón).

Los micrófonos inalámbricos no necesitan cable porque están dotados de un pequeño transmisor de FM (también puede ser de AM, pero los de FM son más habituales). El transmisor de FM (frecuencia modulada puede estar dentro de la carcasa microfónica o ser una unidad independiente (del tamaño aproximado de una cajetilla de tabaco) conectada al micro.

Cada micro está formado por dos partes: la pareja transmisor-receptor (micro-base), que trabajan con la misma frecuencia. Es la salida de la base la que entra a la mesa de mezclas, altavoz, etc. En determinados modelos una sola base puede trabajar con varios micrófonos inalámbricos.

Cada transmisor emitirá a una determinada frecuencia. Cuando se utilizan varios micrófonos, se establece una banda de seguridad mínima de 0,2 MHz entre las frecuencias asignadas a cada par base-micro, para evitar las interferencias. Dos micrófonos transmitiendo en frecuencias muy próximas pueden influirse mutuamente provocando reforzamientos, atenuaciones o, incluso, cancelaciones.

La mayoría de micrófonos inalámbricos, como la mayoría de equipos de audio profesional, tienen un tono de prueba de 1 kHz para permitir los ajustes.

Que un micro transmita únicamente una determinada frecuencia no quiere decir que un transmisor esté prefabricado únicamente para frecuencia única, sino que permite varias frecuencias, pero siempre habrá de preseleccionar una (esto es así para que cuando se utilice más de un micrófono no se dé el caso de que una misma base esté recibiendo dos señales de dos micrófonos diferentes, etc.).

Aunque hay un único transmisor para cada frecuencia, el número de receptores (bases) no está limitado (puede establecerse una analogía con la difusión radiofónica: la emisora emite y la recepción es múltiple).
La banda de frecuencias en que emiten los micrófonos inalámbricos, como todo el espacio de radiofrecuencias, está administrado por el Estado. Cada país establece el margen de frecuencias en que los micrófonos pueden operar. Se intenta evitar que un micro interfiera a una radio, a una cadena de TV, a las frecuencias que utilizan para comunicarse las fuerzas de seguridad del Estado, etc.

La mayoría de receptores cuentan con un dispositivo CAG (control automático de ganancia) que amplifica automáticamente el nivel de la portadora si lo requiere. No obstante, si una señal llega muy débil y requiere gran amplificación, se amplificará la señal, pero también el nivel de ruido.

Los micrófonos inalámbricos no son autónomos, necesitan alimentación externa que se la proporciona una pila de 9 V. El micro suele tener un indicador que muestra la cantidad de batería que le queda, para prevenir el hecho de quedarse sin pilas en medio de una captación (entrevista en directo, secuencia de grabación por bloques, etc.). Además del indicador, cuando está a punto de acabarse la batería el micro manda a la base una señal inaudible, y un indicador de la misma empieza a parpadear.

La impedancia de salida de los micrófonos inalámbricos es mucho menor que la de los micrófonos de cable. El estándar se sitúa en torno a los 50 ohmios. Todos los elementos de los equipos inalámbricos (micro, base, cable de antena y conectores) deben adaptarse a esta impedancia.

Para evitar interferencias, el micro y la base deben estar separados entre sí al menos 10 metros. La base cuenta con un indicador que muestra el nivel de la señal de radiofrecuencia recibida. Si la señal que llega es insuficiente, se puede mover la posición de la antena o antenas. Si no es posible ajustarlo, se debe buscar una mejor ubicación. También es posible colocar la antena del receptor más próxima al transmisor y luego trasladar la señal a la base mediante un cable de antena, cable que debe tener una impedancia apropiada con respecto a la pareja micro-base. Así mismo, debe ser un cable de buena calidad, si no la ventaja de acercar la antena próxima al transmisor se perderá por la introducción de ruido.


-Ciertas bases utilizan el sistema diversity: cuentan con dos antenas conectadas a dos receptores idénticos. Un circuito se encarga de chequear constantemente la potencia de la señal recibida por cada receptor y de seleccionar automáticamente la señal de mayor potencia. Si ambos reciben la misma señal, la salida del sistema ofrece una suma de las dos.

-Las dos antenas (los dos receptores) del sistema diversity deben estar separados entre sí a una distancia concreta que depende de la frecuencia a la que operen (por otra parte, de no separarse tendría poco sentido su utilización en conjunto). El sistema diversity sería ineficaz y habría que tener en cuenta que este sistema incrementa considerablemente el coste del equipo que de por sí ya es bastante elevado. Cuando los receptores están separados es poco probable que una zona de sombra que afecta a un receptor afecte también al otro y, de igual modo, separados, las señales recibidas son distintas (cambian la proporción de ondas directas y ondas reflejadas que reciben). El sistema diversity resulta caro, no obstante, bien utilizado, incrementa exponencialmente la fiabilidad del sistema.

La principal ventaja del micrófono inalámbrico es que proporciona gran movilidad.

Su inconveniente que es muy sensible a las interferencias radioeléctricas. Además, los micrófonos inalámbricos son bastante caros y suponen un desembolso importante. Con todas las cosas siendo iguales en términos de lo que se escucha, mantenga en mente que las ventajas de los sistemas inalámbricos son tanto visuales como auditivas; el frente del escenario se ve mucho mejor sin todos los cables. Y darle a sus vocalistas, conferencistas,etc. la libertad de moverse y concentrarse en su mensaje puede otorgarle un impacto significativo al servicio.

Teléfono inalámbrico

Un teléfono inalámbrico es básicamente un aparato de radio que se conecta sin cables a una base, que a su vez está conectada a la red telefónica local (fija). Generalmente tiene un rango de 100 metros o menos de su estación base y funcionan en las frecuencias de 900 Mhz en América Latina, en la frecuencia de los 2.4 Ghz, 5.8 Ghz y actualmente 1.9 Ghz con la tecnología DECT.

La base del teléfono necesita estar conectada tanto a una línea fija como a la electricidad; el teléfono funciona por medio de baterías recargables las cuales normalmente se cargan al dejarlo en su base cuando no se usa.
Además el Teléfono inalámbrico también puede conectarse a una Central Telefónica intercomunicador que NO utilizan línea fija de teléfono exterior. La central hace funcionar varios teléfonos inalámbricos entre sí.

Archivo:TELEFONO.jpg


En los Estados Unidos, se usan 7 frecuencias asignadas por la Comisión Federal de Comunicaciones (FCC), estas son:

1.7 MHz (Hasta 6 canales, Sistema AM

27 MHz (asignada en 1980, hasta 10 canales, Sistema FM)

43–50 MHz (asignada en 1986, hasta 25 canales, Sistema FM)

900 MHz (902–928 MHz) (asignada en 1990)

1.9 GHz (1920-1930 MHz) (desarrollada en 1993 y asignada en Estados Unidos en octubre de 2005)

2.4 GHz (asignada en 1998)

5.8 GHz (asignada en 2003)

Actualmente todos los teléfonos vendidos en los Estados Unidos usan las bandas de 900 Mhz, 2.4 Ghz y 5.8 Ghz. La recientemente asignada frecuencia de 1.9 Ghz es usada por el estándar DECT desarrollado en Europa.

Comunicación inalámbrica

La comunicación inalámbrica (inglés wireless, sin cables) es aquella en la que extremos de la comunicación (emisor/receptor) no se encuentran unidos por un medio de propagación físico, sino que se utiliza la modulación de ondas electromagnéticas a través del espacio. En este sentido, los dispositivos físicos sólo están presentes en los emisores y receptores de la señal, entre los cuales encontramos: antenas, computadoras portátiles, PDA, teléfonos móviles, etc.

Archivo:Wireless rede.gif

Nuestra naturaleza humana nos hace desenvolvernos en situaciones donde se requiere comunicación. Para ello, es necesario establecer medios para que esto se pueda realizar. Uno de los medios más discutidos es la capacidad de comunicar computadores a través de redes inalámbricas.

La comunicación inalámbrica, que se realiza a través de ondas de radiofrecuencia, facilita la operación en lugares donde la computadora no se encuentra en una ubicación fija (almacenes, oficinas de varios pisos, etc.); pero se trata de una tecnología sometida a investigación que en el futuro será utilizada de forma general.
Cabe también mencionar actualmente que las redes cableadas presentan ventaja en cuanto a transmisión de datos sobre las inalámbricas. Mientras que las cableadas proporcionan velocidades de hasta 1 Gbps (Red Gigabit), las inalámbricas alcanzan sólo hasta 108 Mbps.

Se puede realizar una "mezcla" entre inalámbricas y alámbricas, de manera que pueden funcionar de la siguiente manera: que el sistema cableado sea la parte principal y la inalámbrica sea la que le proporcione movilidad al equipo y al operador para desplazarse con facilidad en distintos campo (almacén u oficina).
Un ejemplo de redes a larga distancia son las Redes públicas de Conmutación por Radio. Estas redes no tienen problemas en pérdida de señal, debido a que su arquitectura está diseñada para soportar paquetes de datos en vez de comunicaciones por voz.

Actualmente, las transmisiones inalámbricas constituyen una eficaz herramienta que permite la transferencia de voz, datos y vídeo sin la necesidad de cableado. Esta transferencia de información es lograda a través de la emisión de ondas de radio teniendo dos ventajas: movilidad y flexibilidad del sistema en general.
En general, la tecnología inalámbrica utiliza ondas de radiofrecuencia de baja potencia y una banda específica, de uso libre para transmitir, entre dispositivos.

En general, la tecnología inalámbrica utiliza ondas de radiofrecuencia de baja potencia y una banda específica, de uso libre o privada para transmitir, entre dispositivos.

Estas condiciones de libertad de utilización sin necesidad de licencia, ha propiciado que el número de equipos, especialmente computadoras, que utilizan las ondas para conectarse, a través de redes inalámbricas haya crecido notablemente.

La tendencia a la movilidad y la ubicuidad hacen que cada vez sean más utilizados los sistemas inalámbricos, y el objetivo es ir evitando los cables en todo tipo de comunicación, no solo en el campo informático sino en televisión, telefonía, seguridad, domótica, etc.

Un fenómeno social que ha adquirido gran importancia, en todo el mundo, como consecuencia del uso de la tecnología inalámbrica son las comunidades inalámbricas que buscan la difusión de redes alternativas a las comerciales. El mayor exponente de esas iniciativas en España es RedLibre.

Red inalámbrica

El término red inalámbrica (Wireless network) en inglés es un término que se utiliza en informática para designar la conexión de nodos sin necesidad de una conexión física (cables), ésta se da por medio de ondas electromagneticas. La transmisión y la recepción se realizan a través de puertos.

Una de sus principales ventajas es notable en los costos, ya que se elimina todo el cable ethernet y conexiones físicas entre nodos, pero también tiene una desventaja considerable ya que para este tipo de red se debe de tener una seguridad mucho mas exigente y robusta para evitar a los intrusos.

En la actualidad las redes inalámbricas son una de las tecnologías más prometedoras.

Categorías

Existen dos categorías de las redes inalámbricas.
1. Larga distancia: estas son utilizadas para distancias grandes como puede ser otra ciudad u otro país.
2. Corta distancia: son utilizadas para un mismo edificio o en varios edificios cercanos no muy retirados.

Según su cobertura, se pueden clasificar en diferentes tipos:

Wireless Personal Area Network
En este tipo de red de cobertura personal, existen tecnologías basadas en HomeRF (estándar para conectar todos los teléfonos móviles de la casa y los ordenadores mediante un aparato central); Bluetooth (protocolo que sigue la especificación IEEE 802.15.1); ZigBee (basado en la especificación IEEE 802.15.4 y utilizado en aplicaciones como la domótica, que requieren comunicaciones seguras con tasas bajas de transmisión de datos y maximización de la vida útil de sus baterías, bajo consumo); RFID (sistema remoto de almacenamiento y recuperación de datos con el propósito de transmitir la identidad de un objeto (similar a un número de serie único) mediante ondas de radio.

Wireless Local Area Network
En las redes de área local podemos encontrar tecnologías inalámbricas basadas en HiperLAN (del inglés, High Performance Radio LAN), un estándar del grupo ETSI, o tecnologías basadas en Wi-Fi, que siguen el estándar IEEE 802.11 con diferentes variantes.

Wireless Metropolitan Area Network
Para redes de área metropolitana se encuentran tecnologías basadas en WiMAX (Worldwide Interoperability for Microwave Access, es decir, Interoperabilidad Mundial para Acceso con Microondas), un estándar de comunicación inalámbrica basado en la norma IEEE 802.16. WiMAX es un protocolo parecido a Wi-Fi, pero con más cobertura y ancho de banda. También podemos encontrar otros sistemas de comunicación como LMDS (Local Multipoint Distribution Service).

Wireless Wide Area Network
En estas redes encontramos tecnologías como UMTS (Universal Mobile Telecommunications System), utilizada con los teléfonos móviles de tercera generación (3G) y sucesora de la tecnología GSM (para móviles 2G), o también la tecnología digital para móviles GPRS (General Packet Radio Service).

Archivo:Tipus xarxa.gif
Según el rango de frecuencias utilizado para transmitir, el medio de transmisión pueden ser las ondas de radio, las microondas terrestres o por satélite, y los infrarrojos, por ejemplo. Dependiendo del medio, la red inalámbrica tendrá unas características u otras:

Ondas de radio: las ondas electromagnéticas son omnidireccionales, así que no son necesarias las antenas parabólicas. La transmisión no es sensible a las atenuaciones producidas por la lluvia ya que se opera en frecuencias no demasiado elevadas. En este rango se encuentran las bandas desde la ELF que va de 3 a 30 Hz, hasta la banda UHF que va de los 300 a los 3000 MHz, es decir, comprende el espectro radioelectrico de 30 - 3000000000 Hz.

Microondas terrestres: se utilizan antenas parabólicas con un diámetro aproximado de unos tres metros. Tienen una cobertura de kilómetros, pero con el inconveniente de que el emisor y el receptor deben estar perfectamente alineados. Por eso, se acostumbran a utilizar en enlaces punto a punto en distancias cortas. En este caso, la atenuación producida por la lluvia es más importante ya que se opera a una frecuencia más elevada. Las microondas comprenden las frecuencias desde 1 hasta 300 GHz.

Microondas por satélite: se hacen enlaces entre dos o más estaciones terrestres que se denominan estaciones base. El satélite recibe la señal (denominada señal ascendente) en una banda de frecuencia, la amplifica y la retransmite en otra banda (señal descendente). Cada satélite opera en unas bandas concretas. Las fronteras frecuenciales de las microondas, tanto terrestres como por satélite, con los infrarrojos y las ondas de radio de alta frecuencia se mezclan bastante, así que pueden haber interferencias con las comunicaciones en determinadas frecuencias.

Infrarrojos: se enlazan transmisores y receptores que modulan la luz infrarroja no coherente. Deben estar alineados directamente o con una reflexión en una superficie. No pueden atravesar las paredes. Los infrarrojos van desde 300 GHz hasta 384 THz.

Proyecto HAARP

Complejo de antenas pertenecientes al programa HAARP

La cifra mágica 6.965 Mhz. , en la pantalla del receptor

Quizás a algunos no les suenen estas siglas, pero pertenecen a un misterioso proyecto de la Fuerza Aérea norteamericana cuyas siglas HAARP, High Frequency Advanced Auroral Research Project. Traducido al español sería, Programa de Investigación de Aurora Activa de Alta Frecuencia. En unas instalaciones militares situadas en Gakona, Alaska, se está desarrollando un misterioso proyecto el cual consiste en 180 antenas que funcionando en conjunto será como una sola antena que emitirá 1 GW =1.000.000.000 W, es decir un billón de ondas de radio de alta frecuencia las cuales penetran en la atmósfera inferior e interactúan con la corriente de los elecrojets aureales.

En este sentido debemos reseñar que la tierra se encuentra envuelta y protegida por la atmósfera. La troposfera se extiende desde la superficie terrestre hasta unos 16 km de altura. La estratosfera, con su capa de ozono, se sitúa entre los 16 y 48 km de altura. Mas allá de los 48 km tenemos la ionosfera que llega hasta los 350 km de altura. Los cinturones de Van Allen se sitúan a distancias superiores y tienden a captar las partículas energéticas que tratan de irrumpir en la tierra desde el espacio exterior.

En este sentido el proyecto HAARP es uno de tantos que lleva a cabo la Marina y la Fuerza Aérea de EEUU. Otros proyectos militares implicaban o han implicado el estudio de la ionosfera, la alta atmósfera y el uso de satélites espaciales con fines más o menos singulares, vendiéndose su utilización con fines, principalmente, no bélicos. Por citar alguno otros, tenemos :

Project Starfish (1962) Se trataba de realizar experimentos en la ionosfera, alterar las formas y la intensidad de los cinturones de Van Allen, etc..

SPS: Solar Power Satellite Project (1968). Proyecto por el cual se quería generar una constelación de satélites geostacionarios capaz de interceptar la radiación solar y transmitirla en rayos concentrados de microondas a la tierra para su uso posterior.

SPS Military Implications (1978). El proyecto SPS se rehizo para adaptarlo a fines militares. La constelación de satélites podría usar y concentrar la radiación solar para ser usada como un rayo capaz de destruir misiles u objetos enemigos, alterar las comunicaciones que utilizarán la ionosfera como pantalla reflectora, etc…

Y más experimentos donde la alteración local de la capa de la alta atmósfera, combinada con la existencia de multitud de satélites ha sido el objeto fundamental de los experimentos. Todos ellos vendidos al gran publico como proyectos para realizar estudios, comprender, mejorar nuestro conocimiento de la física de la alta atmósfera. Incluso, han aparecido mensajes de la administración donde se hablaba de incrementar el nivel de ozono estratosférico y realizar estudios del impacto del cambio climático en nuestro mundo.


Por lo tanto, HAARP es uno más de estos proyectos militares llevados a cabo por la Defensa americana. Volvamos a lo que conocemos de este proyecto.

Los pulsos emitidos artificialmente estimulan a la ionosfera creando ondas que pueden recorrer grandes distancias a través de la atmósfera inferior y penetran dentro de la tierra para encontrar depósitos de mísiles, túneles subterráneos, o comunicarse con submarinos sumergidos, entre mucha otras aplicaciones.

¿Qué es el Electrojet?. Hay una electricidad flotando sobre la Tierra llamada electrojet aureal, al depositar energía en ella se cambia el medio, cambiando la corriente y generando ondas LF (Low Frecuency) y VLF (Very Low Frecuency). HAARP tiene la intención de acercar el electrojet a la Tierra con el objetivo de aprovecharlo en una gran estación generadora.

HAARP enviará haces de radiofrecuencia dentro de la ionosfera, los electrojet afectan al clima global, algunas veces durante una tormenta eléctrica llegan a tocar la Tierra, afectando a las comunicaciones por cables telefónicos y eléctricos, la interrupción de suministros eléctricos e incluso alteraciones en el estado del ser humano.

El HAARP actuaría como un gran calentador ionosférico, el más potente del mundo. En este sentido podría tratarse de la más sofisticada arma geofísica construida por el hombre.

¿Un proyecto con intención de manipular el mundo?

Hasta aquí hemos descrito la parte "oficial" de la cuestión, pero ¿por qué hay quien cree que detrás de HAARP se oculta algo más?, ¿ extraños experimentos de modificación del clima, de control de la mente y de producir incluso terremotos ?.

Ciertamente algo de base científica asoma en todo este asunto, HAARP con sus cientos de millones de vatios de potencia y antenas se puede considerar como un verdadero "calefactor" de la alta atmósfera, provocando una tremenda ionización que puede acarrear consecuencias imprevisibles, y que gracias a su efecto "espejo" podría dirigir sus efectos hacia cualquier zona del planeta. Estaríamos hablando de un nuevo tipo de arma, capaz de intensificar tormentas, prolongar sequías, sobre territorio de un supuesto enemigo, y perjudicándolo sin que este se diera cuenta sin mas … ¿ ficción ?.

El proyecto es tan controvertido como peligroso. Sus defensores aducen un sinfín de ventajas de carácter científico, geofísico y militar, pero sus detractores están convencidos de que podrían tener consecuencias catastróficas para nuestro planeta, desde arriesgadas modificaciones en la ionosfera, hasta la manipulación de la mente humana.
El científico Nick Begich junto a la periodista Jeanne Manning realizaron una profunda investigación sobre le tema fruto del cual vio la luz el libro "Angels don't play this harp" (Los ángeles no tocan esta arpa),en el que ambos autores plantean inquietantes hipótesis, una de ellas es que de ponerse en marcha dicho proyecto podría tener peores consecuencias que las pruebas nucleares

De acuerdo con la Dra. Rosalie Bertell, HAARP forma parte de un sistema integrado de armamentos, que tiene consecuencias ecológicas potencialmente devastadoras.

"Se relaciona con cincuenta años de programas intensos y crecientemente destructivos para comprender y controlar la atmósfera superior. Sería precipitado no asociar HAARP con la construcción del laboratorio espacial que está siendo planeado separadamente por los Estados Unidos. HAARP es parte integral de una larga historia de investigación y desarrollo espacial de naturaleza militar deliberada. Las implicaciones militares de la combinación de estos proyectos son alarmantes… La capacidad de la combinación HAARP/Spacelab/cohete espacial de producir cantidades muy grandes de energía, comparable a una bomba atómica, en cualquier parte de la tierra por medio de haces de láser y partículas, es aterradora. El proyecto será probablemente "vendido" al público como un escudo espacial contra la entrada de armas al territorio nacional o, para los más ingenuos, como un sistema para reparar la capa de ozono".

Fuera de la manipulación climática, HAARP tiene una serie de otros usos relacionados: "HAARP podría contribuir a cambiar el clima bombardeando intensivamente la atmósfera con rayos de alta frecuencia. Convirtiendo las ondas de baja frecuencia en alta intensidad podría también afectar a los cerebros humanos, y no se puede excluir que tenga efectos tectónicos".

Así pretenden manipular el clima

Por si fuera poco, a la posible manipulación de las mentes humanas y las modificaciones en la ionosfera habría que sumar nuevos efectos negativos. El propio creador del calentador ionosférico del proyecto HAARP, Bernard Eastlund, asegura que su invento podría, también, controlar el clima. Una afirmación que ha llevado a Begich a concluir que si el HAARP operase al cien por cien podría crear anomalías climatológicas sobre ambos hemisferios terrestres, siguiendo la teoría de la resonancia tan empleada por el genial Nikola Tesla en sus inventos. Un cambio climatológico en un hemisferio desencadenaría otro cambio en el otro hemisferio. Una posibilidad que no se debe descartar, sobre todo a tenor de las opiniones de científicos de le Universidad de Stanford, que aseguran que el clima mundial podría ser controlado mediante la transmisión de señales de radio relativamente pequeñas, a los cinturones de Van Allen. Por resonancia, pequeñas señales activadoras pueden controlar energías enormes.


La evidencia científica reciente sugiere que el HAARP está en funcionamiento y que tiene la capacidad potencial de desencadenar inundaciones, sequías, huracanes y terremotos. Desde un punto de vista militar, HAARP es un arma de destrucción masiva. Potencialmente, constituye un instrumento de conquista capaz de desestabilizar selectivamente los sistemas agrícolas y ecológicos de regiones enteras.

¿Cómo se alteraría el clima con este proyecto?

Se ha sugerid en diversos trabajos científicos que los vientos de la alta altmósfera ( sobre los 50 km de altura) juegan un papel importante en el chorro, que a su vez controla las estructuras de tiempo en superficie. Otros autores han estudiado el "auroreal electrojet", y han encntrado que existe una relación muy estrecha con los vientos a 80 km de altura. Por lo tanto los sistemas electrojet – vientos troposféricos están, aparentemente, correlacionados.

Uno de los objetivos del HAARP es modular las corrientes del electrojet y así afectar a la intensidad y dirección de os vientos zonales y del chorro.
Por otra parte, el poder "calentar" ciertas zonas hostiles del globo podría generar las condiciones meteorológicas para producir sequías.

Deberemos estar pendientes de este proyecto enigmático. Se preveé que en Groenlandia y Noruega se instalen o se hayan instalado nuevas antenas dentro del proyecto HAARP. En otras islas del Pacífico se supone que se han instalado otras tantas antenas del proyecto HAARP.

Las primeras pruebas operativas se esperan que se realicen en el 2003.

¿Estaremos viviendo el comienzo de una nueva era de armas geofísicas capaces de modificar el clima a escala local y ser empleadas contra países hostiles?

¿Quién fue Nikola Tesla?

Para terminar, no queremos olvidarnos de este inventor de nuestro tiempo que, directa o indirectamente, está relacionado con el HAARP.

Nikola Tesla fue uno de los sabios menos conocidos de nuestra época. Nació en Croacia (1856) y murió en Nueva York (1943). Tesla fue ante todo un inventor. Inventó la corriente alterna y el motor de inducción electromagnética, turbinas muy eficientes, etc.. Algunos le atribuyen la invención de la radio, pero su idea, según parece, se la tomaron Marconi y Edison. Tesla fue experto en termodinámica, energía solar, rayos X y cósmicos, etc.

Inventó un sistema de transmisión de energía inalámbrica: transmitir energía sin medio físico. Consiguió encender a un conjunto de lámparas de 50 vatios a 40 km de distancia y lanzó la idea de poder concentrar y transmitir energía a grandes distancias. Tesla fue un visionario y adelantado de su tiempo ya que pronostico la invención de la televisión, potenciales usos de satélites venideros y el posible uso de máquinas del tiempo capaz de controlarlo a grandes distancias (¡antes de 1910!).

El proyecto HAARP parte de la idea originaria de Tesla: poder transmitir potentes ondas electromagnéticas que se puedan reflejarse en la ionosfera y así alcanzar grandes distancias.