domingo, 25 de julio de 2010

La radiofrecuencia

 

El término radiofrecuencia, también denominado espectro de radiofrecuencia o RF, se aplica a la porción menos energética del espectro electromagnético, situada entre unos 3 Hz y unos 300 GHz. Las ondas electromagnéticas de esta región del espectro se pueden transmitir aplicando la corriente alterna originada en un generador a una antena.
A partir de 1 GHz las bandas entran dentro del espectro de las
microondas. Por encima de 300 GHz la absorción de la radiación electromagnética por la atmósfera terrestre es tan alta que la atmósfera se vuelve opaca a ella, hasta que, en los denominados rangos de frecuencia infrarrojos y ópticos, vuelve de nuevo a ser transparente.

¿Qué es una onda de radio?
En general estamos familiarizados con las vibraciones u oscilaciones de varias formas: Un péndulo, un árbol meciéndose con el viento, las cuerdas de una guitarra –son todos ejemplos de oscilaciones.
Lo que tienen en común es que algo, como un medio o un objeto, está vibrando de forma periódica, con cierto número de ciclos por unidad de tiempo. Este tipo de onda a veces es denominada onda mecánica, puesto que son definidas por el movimiento de un objeto o de su medio de propagación.
Cuando esas oscilaciones viajan (esto es, cuando las vibraciones no están limitadas a un lugar) hablamos de ondas propagándose en el espacio. Por ejemplo, un cantante crea oscilaciones periódicas de sus cuerdas vocales al cantar. Estas oscilaciones comprimen y descomprimen el aire periódicamente, y ese cambio periódico de la presión del aire sale de la boca del cantante y viaja a la velocidad del sonido. Una piedra arrojada a un lago causa una alteración que viaja a través del mismo como una onda. Una onda tiene cierta velocidad, frecuencia y longitud de onda.
Las mismas están conectadas por una simple relación:

Velocidad = Frecuencia * Longitud de Onda

La longitud de onda (algunas veces denotada como lambda, ) es la distancia medida desde un punto en una onda hasta la parte equivalente de la siguiente, por ejemplo desde la cima de un pico hasta el siguiente. La frecuencia es el número de ondas enteras que pasan por un punto fijo en un segundo. La velocidad se mide en metros/segundo, la frecuencia en ciclos por segundo (o Hertz, abreviado Hz), y la longitud de onda, en metros.

Las ondas también tienen una propiedad denominada amplitud. Esta es la distancia desde el centro de la onda hasta el extremo de uno de sus picos, y puede ser asimilada a la "altura" de una onda de agua.

Fuerzas electromagnéticas
Las fuerzas electromagnéticas son fuerzas entre cargas y corrientes eléctricas. Nos percatamos de ellas cuando tocamos la manija de una puerta después de haber caminado en una alfombra sintética, o cuando
rozamos una cerca eléctrica. Un ejemplo más fuerte de las fuerzas electromagnéticas son los relámpagos que vemos durante las tormentas eléctricas. La fuerza eléctrica es la fuerza entre cargas eléctricas. La
fuerza magnética es la fuerza entre corrientes eléctricas.

Los electrones son partículas que tienen carga eléctrica negativa. También hay otras partículas, pero los electrones son responsables de la mayor parte de las cosas que necesitamos conocer para saber como funciona un radio.
Veamos qué sucede en un trozo de alambre recto en el cual empujamos los electrones de un extremo a otro periódicamente. En cierto momento, el extremo superior del alambre está cargado negativamente –todos los electrones están acumulados allí. Esto genera un campo eléctrico que va de positivo a negativo a lo largo del alambre. Al momento siguiente, los electrones se han acumulado al otro lado y el campo eléctrico apunta en el otro sentido. Si esto sucede una y otra vez, los vectores de campo eléctrico,
por así decirlo, (flechas de positivo a negativo) abandonan el alambre y son radiados en el espacio que lo rodea. Lo que hemos descrito se conoce como dipolo (debido a los dos polos, positivo y negativo), o más comúnmente antena dipolo. Esta es la forma más simple de la antena omnidireccional. El movimiento del campo electromagnético es denominado comúnmente onda electromagnética.

La frecuencia y la longitud de onda determinan la mayor parte del comportamiento de una onda electromagnética, desde las antenas que construimos hasta los objetos que están en el camino de las redes que intentamos hacer funcionar. Son responsables por muchas de las diferencias entre los estándares que podamos escoger. Por lo tanto, comprender las ideas básicas de frecuencia y longitud de onda ayuda mucho en el trabajo práctico con redes inalámbricas.

Otra cualidad importante de las ondas electromagnéticas es la polarización. La polarización describe la dirección del vector del campo eléctrico. En una antena bipolar alineada verticalmente (el trozo de alambre recto), los electrones sólo se mueven de arriba a abajo, no hacia los lados (porque no hay lugar hacia donde moverse) y por consiguiente los campos eléctricos sólo apuntan hacia arriba o hacia abajo verticalmente. El campo que abandona el alambre y viaja como una onda tiene una polarización estrictamente lineal (y en este caso vertical). Si acostamos la antena en el suelo (horizontal) tendremos una polarización lineal horizontal.

El espectro electromagético
Las ondas electromagnéticas abarcan un amplio rango de frecuencias (y correspondientemente, de longitudes de onda). Este rango de frecuencias y longitudes de onda es denominado espectro electromagnético. La parte del espectro más familiar a los seres humanos es probablemente la luz, la
porción visible del espectro electromagnético. La luz se ubica aproximadamente entre las frecuencias de 7,5*1014 Hz and 3,8*1014 Hz, correspondientes a longitudes de onda desde cerca de 400 nm (violeta/azul) a 800 nm (rojo).
Normalmente también estamos expuestos a otras regiones del espectro electromagnético, incluyendo los campos de la red de distribución eléctrica CA (Corriente Alterna), a 50/60 Hz, Rayos-X / Radiación Roentgen, Ultravioleta (en las frecuencias más altas de la luz visible), Infrarrojo (en las frecuencias más bajas de la luz visible) y muchas otras. Radio es el término utilizado para la porción del espectro electromagnético en la cual las ondas pueden ser transmitidas aplicando corriente alterna a una antena. Esto abarca el rango de 3 Hz a 300 GHz, pero normalmente el término se reserva para las frecuencias inferiores a 1 GHz. Cuando hablamos de radio, la mayoría de la gente piensa en la radio FM, que usa una frecuencia de alrededor de 100 MHz. Entre la radio y el infrarrojo encontramos la región de las microondas –con frecuencias de 1 GHz a 300 GHz, y longitudes de onda de 30 cm a 1 mm. El uso más popular de las microondas puede ser el horno de microondas, que de hecho trabaja exactamente en la misma región que los estándares inalámbricos de los que estamos tratando. Estas regiones caen dentro de las bandas que se están manteniendo abiertas para el uso general, sin requerir licencia. Esta región es llamada banda ISM (ISM Band), que significa Industrial, Científica y Médica, por su sigla en inglés. La mayoría de las otras
regiones del espectro electromagnético están altamente controladas por la legislación mediante licencias, siendo los valores de las licencias un factor económico muy significativo. Esto atañe específicamente a aquellas partes del espectro que son útiles para la difusión masiva (como lo son la televisión
y la radio), así como también para comunicaciones de voz y datos. En la mayoría de los países, las bandas ISM han sido reservadas para el uso libre. Las frecuencias más interesantes para nosotros son 2400 – 2484 MHz, que son utilizadas por los estándares de radio 802.11b y 802.11g (correspondientes a longitudes de onda de alrededor de 12,5 cm). Otro equipamiento disponible comúnmente utiliza el estándar 802.11a, que opera a 5150 – 5850MHz (correspondiente a longitudes de onda de alrededor de 5
a 6 cm).

Comportamiento de las ondas de radio
Hay algunas reglas simples que pueden ser de mucha ayuda cuando
realizamos los primeros planes para una red inalámbrica:

  • Cuanto más larga la longitud de onda, más lejos llega
  • Cuanto más larga la longitud de onda, mejor viaja a través y alrededor de obstáculos
  • Cuanto más corta la longitud de onda, puede transportar más datos

Absorción
Cuando las ondas electromagnéticas atraviesan algún material, generalmente se debilitan o atenúan. La cantidad de potencia perdida va a depender de su frecuencia y, por supuesto, del material. El vidrio de una
ventana obviamente es transparente para la luz, mientras que el vidrio utilizado en los lentes de sol filtra una porción de la intensidad de la luz y bloquea la radiación ultravioleta.
A menudo se utiliza el coeficiente de absorción para describir el impacto de un material en la radiación. Para las microondas, los dos materiales más absorbentes son:

  • Metal: Los electrones pueden moverse libremente en los metales, y son capaces de oscilar y por lo tanto absorber la energía de una onda que los atraviesa.
  • Agua: Las microondas provocan que las moléculas de agua se agiten, capturando algo de la energía de las ondas.

En la práctica de redes inalámbricas, vamos a considerar el metal y el agua como absorbentes perfectos: no vamos a poder atravesarlos (aunque capas finas de agua podrían permitir que una parte de la potencia pase). Son a las microondas lo que una pared de ladrillo es a la luz. Cuando hablamos del agua, tenemos que recordar que se encuentra en diferentes formas: lluvia, niebla, vapor y nubes bajas, y todas van a estar en el camino de los radioenlaces. Tienen una gran influencia y en muchas circunstancias un cambio en el clima puede hacer caer un radioenlace.
Existen otros materiales que tienen un efecto más complejo en la absorción de radiación.
Para los árboles y la madera, la cantidad de absorción depende de cuánta cantidad de agua contienen. La madera vieja y seca es más o menos transparente, la madera fresca y húmeda va a absorber muchísimo.
Los plásticos y materiales similares generalmente no absorben mucha energía de radio pero esto varía dependiendo de la frecuencia y el tipo de material. Antes de construir un componente de plástico (por ejemplo, una protección climática para los dispositivos de radio y sus antenas), es siempre una buena idea verificar que el material no absorba la energía de radio alrededor de 2,4GHz Un método simple de medir la absorción del plástico a 2,4GHz es poner una muestra en un horno microondas por un par de minutos. Si el plástico se calienta, entonces absorbe la energía de radio y no debe ser utilizado.
Finalmente, hablemos de nosotros mismos: los humanos (como otros animales) estamos compuestos mayormente de agua. En lo que a redes inalámbricas se refiere, podemos ser descritos como grandes bolsas llenas de agua, con la misma fuerte absorción. Orientar un punto de acceso en una oficina de forma que su señal deba pasar a través de mucha gente es un error clave cuando instalamos redes en oficinas. Lo mismo sucede en clubes nocturnos, cafés, bibliotecas e instalaciones externas

Interferencia
Cuando trabajamos con ondas, uno más uno no es necesariamente igual a dos. Incluso puede resultar cero. Esto es sencillo de entender cuando dibujamos dos ondas senoidales y sumamos las amplitudes. Cuando un pico coincide con el otro pico, tenemos un resultado máximo (1 + 1 = 2). Esto es denominado interferencia constructiva. Cuando un pico coincide con un valle, tenemos una completa aniquilación ((1 + (-)1 = 0), se denomina interferencia destructiva.

Puede probar esto creando dos olas circulares en el agua mediante dos varitas: verá que cuando dos olas se cruzan, hay áreas con picos de onda más grandes y otras que permanecen casi planas y en calma.
Para que trenes de ondas se sumen o cancelen perfectamente, tienen que tener exactamente la misma longitud de onda y una relación de fase fija, esto significa posiciones fijas desde el pico de una onda hasta las otras.


Linea Visual:

El término línea visual, a menudo abreviada como LOS (por su sigla en inglés, Line of Sight), es fácil de comprender cuando hablamos acerca de la luz visible: si podemos ver un punto B desde un punto A donde estamos, tenemos línea visual. Dibuje simplemente una línea desde A a B, y si no hay nada en el camino, tenemos línea visual.
Las cosas se ponen un poco más complicadas cuando estamos tratando con microondas. Recuerden que la mayoría de las características de propagación de las ondas electromagnéticas son proporcionales a la longitud de onda. Este es el caso del ensanchamiento de las ondas a medida que avanzan. La luz tiene una longitud de onda de aproximadamente 0,5 micrómetros, las microondas usadas en las redes inalámbricas tienen una longitud de onda de unos pocos centímetros. Por consiguiente, los haces de microondas son más anchos –necesitan más espacio.
Note que los haces de luz visibles también se ensanchan, y si los dejamos viajar lo suficiente, podemos ver los resultados a pesar de su pequeña longitud de onda. Cuando apuntamos un láser bien enfocado a la luna, el haz se extenderá abarcando más de 100 metros de radio cuando alcance su superficie. Puede observar este efecto por usted mismo utilizando un apuntador láser económico y un par de binoculares en una noche clara. En lugar de apuntar a la luna, hágalo sobre una montaña distante o una estructura desocupada (como una torre de agua). El radio de su haz va a incrementarse con la distancia.
La línea visual que necesitamos para tener una conexión inalámbrica óptima desde A hasta B es más que simplemente una línea delgada –su forma es más bien la de un cigarro, un elipsoide. Su ancho puede ser descrito por medio del concepto de zonas de Fresnel.

Energia
Cualquier onda electromagnética contiene energía, o potencia –lo podemos sentir cuando disfrutamos (o sufrimos) del calor del sol. La potencia P es de una importancia clave para lograr que los enlaces inalámbricos funcionen: se necesita cierto mínimo de potencia para que el receptor le dé sentido a la señal.
Vamos a volver con más detalles sobre la potencia de transmisión, pérdidas, ganancia y sensibilidad del radio en el capítulo tres.El campo eléctrico se mide en V/m (diferencia de potencial por metro), la potencia contenida en él es proporcional al campo eléctrico al cuadrado

P ~ E2

La potencia es proporcional al cuadrado del voltaje de la señal.
Marbelis Moreno
EES
Seccion:02

 

No hay comentarios:

Publicar un comentario